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Approximated pH of Strong Acids and Bases

Given an aqueous solution of N strong acids and M strong bases, with known
concentrations, we can define a set of acids A = {Hα}, |A| = N , and a set of
bases B = {β}, |B| = M , which we will use to compute an approximation for
the equilibrium H3O+ concentration.

We start laying out the possible reactions in a system of strong acids and
bases

Hα + H2O → H3O+ + α−, (1)

β + H2O → Hβ+ + OH−, (2)

2H2O ⇌ H3O+ + OH−, (3)

a system with a reaction for each different acid Hα ∈ A, a reaction for each base
β ∈ B, and an additional reaction for the water dissociation and association. As
we assume that all acids and bases are strong, we just take into account their
dissociation reaction. Thus, at equilibrium, we expect all acids and bases to be
fully dissociated.

As those reactions only imply association and dissociation, we can simply write
our mass balance equations at any time as

[Hα]0 = [Hα] + [α−],

[β]0 = [β] + [Hβ+],

where [Hα]0 and [β]0 are the initial acid and base concentrations. The conserved
constant is thus the sum of the dissociated and undissociated chemical species
derived from the initial acids and bases, serving as a form of mass conserva-
tion.

The total charge in the solution should also be preserved. Therefore,

[H3O+] +

M
∑

j=0

[Hβ+] = [OH−] +

N
∑

i=0

[α−],

∗This is just a rough draft, expect bad typography, typos, spelling errors and more.
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the equality between negative-charged and positive charged chemical species
must be maintained. In this context, neutral charged species are not considered,
though they are still included in the mass balance equation.

Given the constraints dictated by the reactions and mass conservation, we can
rearrange the charge conservation equality to obtain

Kw

[H3O+]
+

∑

Hα∈A

[α−] − [H3O+] −
∑

β∈B

[Hβ+] = 0,

which is a quadratic equation with two possible solutions: one positive, and one
negative. As hydronium concentration cannot be negative, the only possible
solution would be the positive one.

We can rearrage the expression as

−[H3O+]2 + (A − B)[H3O+] + Kw = 0,

where A is the total acid concentration and B the total base concentration

A =
∑

Hα∈A

[α−], B =
∑

β∈B

[Hβ+].

The positive root of this equation is an approximation of the concentration of
free H3O+ ions in an aqueous solution, which can be “easily” computed using
the quadratic formula as follows

[H3O+] =
A − B ±

√

(A − B)2 + 4Kw

2
,

or by using root-finding algorithms.

Numerical instabilities in the quadratic formula

Given the quadratic formula for the approximate pH

[H3O+] =
A − B ±

√

(A − B)2 + 4Kw

2
,

when numerically solving for [H3O+], and considering Kw ≈ 10−14 as the stan-
dard value, numerical instabilities can araise. This is due to the fact that Kw

can be significantly smaller than A − B. Thus, the subtraction in the numerator
can potentially involve two similar values, potentially resulting in numerical
instabilities. 1

A quadratic equation with real coefficients a, b, and c, generally represented
as

0 = a · x2 + b · x + c,

can be solved using two different methods. The widely known solution is

x =
−b ±

√
b2 − 4 · a · c

2 · a
,

1This is commonly known as “catastrophic cancellation” in floating-point number systems
with subnormal numbers like IEEE 755. Check [1].
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and an alternate, yet equivalent, form known as the “citardauq” formula is

x =
2 · c

−b ±
√

b2 − 4 · a · c
,

which provides the same roots, assuming ac ̸= 0.

Both expressions may cause difficulties when a or c (or both) are small relative
to b. Under such circumstances, one of the roots will require subtracting b from a
value that is nearly equal to it, a process that often leads to significant numerical
inaccuracies.

This issue can be circumvented by calculating the root that does not necessitate
the subtraction of b using the appropriate formula.

An analogous numerical recipe is to compute

q ≡ −1

2
·
[

b + sgn(b) ·
√

b2 − 4 · a · c
]

,

with

sgn(u) =

{

−1 if u < 0,

+1 if u ≥ 0,

a version of the the signum function with the indeterminacy at zero removed,
restricting the point to be grouped with either the positive or the negative
numbers.

Then the two roots are

x1 =
q

a
, x2 =

c

q
.

However, this approach encounters issues if a = 0, although this is not a concern
since the use of a quadratic solver is redundant in such a scenario.
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Approximated pH of Weak Acids and Bases

Suppose a mixture of a weak acid Hα and a weak base β, with known initial
concentrations in an aqueous solution. (Although it can be easily generalized for
any number of acids and bases.)

We have the following reactions and their respective equilibria

Hα + H2O ⇌ H3O+ + α−, Ka =
[H3O+] · [α−]

[Hα]
,

β + H2O ⇌ Hβ+ + OH−, Kb =
[Hβ+] · [OH−]

[β]
,

2H2O ⇌ H3O+ + OH−, Kw = [H3O+] · [OH−].

Simulations of this set of reactions can be performed to recreate paths leading to
the global equilibria, but we are able to find an approximation to the equilibrium
with some additional restrictions.

Following the same procedure as in the strong acids and bases case, the concen-
tration of each chemical species must be preserved. Thus,

[Hα]0 = [Hα] + [α−],

[β]t0 = [β] + [Hβ+].

As in the previous case, total charge must also be preserved

[H3O+] + [Hβ+] = [OH−] + [α−].

Thus, we can compute the amount of free hydronium from the previous constrains
as

Kw

[H3O+]
+

Ka · [Hα]0
[H3O+] + Ka

− Kb · [β]0
Kw

[H3O+]
+ Kb

− [H3O+] = 0.

Although a closed-form expression exists to solve this problem, it is quite large
and involved. Therefore, it is easier to use a root-finding algorithm with fine
tolerances to solve numerically.

4



Daisyworld: pH homeostasis by engineered bacterial com-

munities

For the sake of simplicity, we will adopt an approximation wherein we assume
complete dissociation of all acids and bases. Consequently, our focus will be solely
on strong acids and strong bases. Although this is not realistic and bacteria
typically produce weaker acids and bases, the interesting dynamics showcased
by the model are preserved.

The model draws inspiration from Daisyworld, a conceptual model featuring a
hypothetical planet where two types of daisies—black and white—coexist and
interact with their environment. This planet begins with a barren surface, with
daisies being the sole life form introduced. A crucial aspect is that the daisies
are assumed to significantly affect the planet’s albedo, thereby influencing its
temperature and playing a pivotal role in global climate regulation.

In this scenario, black daisies absorb more sunlight, leading to a slight increase in
their local temperature, whereas white daisies reflect more sunlight, contributing
to a slight decrease in their local temperature. The overall temperature of
Daisyworld is affected by the impact on albedo from both the black and white
daisies.

In our scenario, we have two distinct strains of bacteria, genetically modified
to consistently produce either an acid or a base, cultivated within a chemostat.
This setup parallels Daisyworld, but instead of temperature, we focus on pH.
The acid-producing bacteria protonate their surroundings, leading to a slight
acidification in the pH sensing pathways (which is a result of both the remaining
acid inside the cell, and the acid in the immediate environment). Conversely,
the base-producing bacteria deprotonate their surroundings, leading to a slight
alkalinization in the pH sensing pathways.

Cell dynamics

This can be naively modeled using a system of differential equations as fol-
lows

dua

dt
= [ϕ · β(pHa) − δ] · ua,

dub

dt
= [ϕ · β(pHb) − δ] · ub,

where ua is the concentration of the acid-producer strain, ub is the concentration
of the base-producer strain, ϕ = 1 − (ua + ub) is a simple logistic term used
to limit cell growth, and δ is the dilution rate of the chemostat. The function
β(pHx) characterizes the maximum growth rate achievable at a specific pH.
It aggregates various pH-dependent factors influencing cell growth, including
nutrient availability. A simplified version of this function can be represented as
a parabola, defined as

β(pHx) =
pHopt − pHx

pHopt − pHlim

,

where pHopt is the optimal pH for growth, pHlim represents the maximum
deviation from the optimum pH that still permits bacterial growth, and pHx is
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the pH level sensed by the strain ux. This function exhibits a single peak at the
optimal pH, and decreases as the pH deviates from this optimum.

The typical definiton for pH for conversion from H3O+ is used:

pH([H3O+]) = − log10

(

[H3O+]

1 M

)

.

Molecular dynamics

Appart from cell dynamics, we also should model the pH change over time.
Bacteria produce an acid a (or a base b) at a constant rate, and the molecules
are exported through the membranes as

∅ γ−→ ac

k1a−−⇀↽−−
k2a

ap

k3a−−⇀↽−−
k4a

ae
δ−→ ∅, ∅ γ−→ bc

k1b−−⇀↽−−
k2b

bp

k3b−−⇀↽−−
k4b

be
δ−→ ∅,

where ·c stands for the concentration at the cytosol, ·p is the concentration at
the periplasm, and ·e is the external concentration. The equivalent differential
equations are

dac

dt
= γ − k1a · ac + k2a · ap,

dbc

dt
= γ − k1b · bc + k2b · bp,

dap

dt
= k1a · ac − (k2a + k3a) · ap + k4a · ae,

dbp

dt
= k1b · bc − (k2b + k3b) · bp + k4b · be,

dae

dt
= k3a · ap − k4a · ae − δ · ae,

dbe

dt
= k3b · bp − k4b · be − δ · be,

It can be assumed that those reactions, happening at the molecular level, are
in fact much faster than the population dynamics of interest. Therefore, by
assuming fast dynamics compared with the timescale of the cellular system, we
have

a∗
c =

γ · [k2a · k4a + (k2a + k3a) · δ]

δ · k1a · k3a

, b∗
c =

γ · [k2b · k4b + (k2b + k3b) · δ]

δ · k1b · k3b

,

a∗
p =

γ · (k4a + δ)

δ · k3a

, b∗
p =

γ · (k4b + δ)

δ · k3b

,

a∗
e =

γ

δ
, b∗

e =
γ

δ
,

We can then compute the environmental pH from the approximated hydronium
concentration Hf ≈ [H3O+] from the mix of acids and bases in the media as
previously discussed

Hf(A, B) =
A − B ±

√

(A − B)2 + 4 · Kw

2
,

where A := ua · ae + A0, and B := ub · be + B0. Here, A0 and B0 represent the
concentrations of acid and base, respectively, in the supplied media.

With this information, we can also compute pHa and pHb, the pH sensed by the
producers, as

pHa := − log10 (Ha) , Ha := Hf(A + ωa · ae, B),

pHb := − log10 (Hb) , Hb := Hf(A, B + ωb · be),
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where ωx is a parameter modeling the sensitivity of the strains to the molecule
being produced. They are assumed to be parameters depending on the amount of
cytoplasmic, periplasmic and external concentrations of the compounds produced
by a single cell. In a generic form, for the steady state concentrations of a
compound x,

ωx · xe = c1x · (c2x · xc + c3x · xp + c4x · xe)

= c1x ·
(

c2x · k2x · k4x + (k2x + k3x) · δ

k1x · k3x

+ c3x · k4x + δ

k3x

+ c4x

)

· xe,

where cix, are parameters that control the extent to which the produced compound
disrupts bacterial growth by changing the cytoplasmic, periplasmic and external
pH. As internal pH is normally tightly controlled, the contribution of xc should
be negligible (c2 ≈ 0). Moreover, with the chemostat assumption, the external
concentration xe should be instantly homogenized and already accounted in the
free hydronium concentration in the environment Hf (c4 = 0). Thus, most of the
effect should be due to the remaining concentration in the periplasm xp,

ωx ≈ c1x · c3x · k4x + δ

k3x
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